Culminating Review for Calculus

Limits

Derivatives
Velocity and Acceleration
Extreme Values
Optimization
Curve Sketching

Limits

$$
\lim _{x \rightarrow a} f(x)=L
$$

Tells us that the value of $f(x)$ approaches L as x approaches the value a.
(a) $\lim _{x \rightarrow 1^{-}} f(x)=$
(b) $\lim _{x \rightarrow 1^{+}} f(x)=$
(c) $\lim _{x \rightarrow 1} f(x)=$
(d) $f(1)=$

- Algebraic methods

$\lim _{x \rightarrow 0}\left(3 x^{2}-2 x+7\right) \quad$ direct substitution
$\lim _{x \rightarrow-4}\left(\frac{x^{2}+7 x+12}{x+4}\right) \quad$ factor and simplify
$\lim _{x \rightarrow 0}\left(\frac{\sqrt{x+9}-3}{x}\right)$
multiply by the conjugate $\sqrt{x+9}+3$ or use substitution, let $u=\sqrt{x+9}$
$\lim _{x \rightarrow 0}\left(\frac{\sqrt[3]{x+27}-3}{x}\right)$
use substitution, let $u=\sqrt[3]{x+27}$

Continuity

- A function f is continuous at $x=a$ if

1. $\lim _{x \rightarrow a} f(x)$ exists
2. $\lim _{x \rightarrow a} f(x)=f(a)$

Derivatives

Derivative of a function using first principles:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0}\left(\frac{f(x+h)-f(x)}{h}\right)
$$

Power Rule

$$
f(x)=x^{n} \quad f^{\prime}(x)=n x^{n-1}
$$

Power of a Function Rule

$$
f(x)=(g(x))^{n} \quad f^{\prime}(x)=n(g(x))^{n-1} g^{\prime}(x)
$$

Product Rule

$$
f(x)=p(x) q(x) \quad f^{\prime}(x)=p^{\prime}(x) q(x)+p(x) q^{\prime}(x)
$$

Quotient Rule

$$
f(x)=\frac{p(x)}{q(x)} \quad f^{\prime}(x)=\frac{p^{\prime}(x) q(x)-p(x) q^{\prime}(x)}{(q(x))^{2}}
$$

Chain Rule

$$
f(x)=g(h(x)) \quad f^{\prime}(x)=g^{\prime}(h(x)) h^{\prime}(x)
$$

Exponential Rules

$$
f(x)=e^{x}
$$

$$
f^{\prime}(x)=e^{x}
$$

$$
f(x)=e^{g(x)}
$$

$$
f^{\prime}(x)=e^{g(x)} g^{\prime}(x)
$$

$$
f(x)=b^{x}
$$

$$
f^{\prime}(x)=b^{x} \ln b
$$

$$
f(x)=b^{g(x)}
$$

$$
f^{\prime}(x)=b^{g(x)}(\ln b) g^{\prime}(x)
$$

Trigonometric Rules

$$
f(x)=\sin x
$$

$$
f^{\prime}(x)=\cos x
$$

$$
f(x)=\cos x
$$

$$
f^{\prime}(x)=-\sin x
$$

$$
f(x)=\sin (g(x))
$$

$$
f^{\prime}(x)=\cos (g(x)) g^{\prime}(x)
$$

$$
f(x)=\cos (g(x))
$$

$$
f^{\prime}(x)=-\sin (g(x)) g^{\prime}(x)
$$

Velocity and Acceleration

Position, velocity and acceleration

- Given position as $s(t)$ then
- Velocity is $v(t)=s^{\prime}(t)$
- Acceleration is $a(t)=v^{\prime}(t)=s^{\prime \prime}(t)$

Extreme Values

Algorithm for Finding Maximum and Minimum (Extreme) Values:

If a function $f(x)$ has a derivative at every point in the interval $a \leq$ $x \leq b$, calculate $f(x)$ at:

- all points in the interval $a \leq x \leq b$, where $f^{\prime}(x)=0$ (critical values)
- the endpoint $x=a$ and $x=b$

The maximum value of $f(x)$ on the interval $a \leq x \leq b$, is the largest of these values, and the minimum value of $f(x)$ on the interval is the smallest of these values

Optimization

An Algorithm for Solving Optimization Problems

- Identify the variables.
- Determine a function that represents the quantity to be optimized.
- Determine the domain of the function to be optimized.
- Use the algorithm for extreme values to find the absolute maximum or minimum in the domain.
- Conclude.

Curve Sketching

An Algorithm for Curve Sketching

Using $f(x)$

- Determine any intercepts.
- Determine any vertical asymptotes and determine the behaviour on either side of the asymptote.
- Determine any horizontal or oblique asymptotes. Identify if the function values approach the asymptote from above or below.

Using $f^{\prime}(x)$

- Determine any critical numbers by finding where $f^{\prime}(x)=0$ or where $f^{\prime}(x)$ is undefined.
- Determine the intervals of increase/decrease, and identify any local or absolute extrema.

Using $f^{\prime \prime}(x)$

- Determine possible points of inflection by finding where $f^{\prime \prime}(x)=0$ or where $f^{\prime \prime}(x)$ is undefined.
- Determine the intervals of concavity, and identify any points of inflection.
- Sketch the curve.

